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Recent contributions to the 3-D vortex methods are presented. Following Cottet,
the particles strength exchange (PSE) scheme for diffusion is modified in the vicinity
of solid boundaries to avoid a spurious vorticity flux and to enforce a zero-normal
component of vorticity during the convection/PSE step. The vortex sheet algorithm
used to enforce the no-slip boundary condition through a vorticity flux at the boundary
and the technique used to perform accurate redistributions in the presence of bodies
of general geometry are extended from their 2-D counterpart. To perform simulations
with nonuniform resolution, a mapping of the redistribution lattice is used. Computa-
tional efficiency is attained through the use of parallel tree codes based on multipole
expansions of vortex particles and of vortex panels. The method is validated, by
comparisons with other authors’ results, on the flow past a sphere at Re = 300. It is
then applied to compute the flow at Re = 500 and 1000. c© 2002 Elsevier Science (USA)

Key Words: vortex method; particle method; viscous flow; particle redistribution;
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1. INTRODUCTION

In the past two decades, significant developments in the field of vortex methods have made
them well suited to perform high-resolution simulations of the incompressible Navier–
Stokes equations in unbounded domains. These developments include fast algorithms using
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multipole expansions (Greengard and Rohklin [11], Barnes and Hut [2]) and active error
control (so that the error induced by the use of multipole expansions is less than a prescribed
tolerance) (Salmon and Warren [40], Winckelmans et al. [45, 47]), accurate treatment of
viscous effects using the particle strength exchange scheme (PSE; Degond and Mas-Gallic
[9], Mas-Gallic [27], Winckelmans and Leonard [44]), accurate enforcement of the viscous
boundary condition (Koumoutsakos et al. [17], Cottet and Koumoutsakos [7], Leonard et al.
[21], Benhaddouch [4], Ploumhans et al. [34], Ploumhans and Winckelmans [35, 36]), use
of a mapping to allow one to perform simulations with nonuniform spatial resolution (Cottet
et al. [6, 8], Ould Salihi [32], Cottet and Koumoutsakos [7], Ploumhans and Winckelmans
[35, 36]), and a symmetrized PSE (Ploumhans and Winckelmans [35, 36]) and capability
of performing an accurate particle redistribution in the presence of a boundary that crosses
the redistribution lattice in an arbitrary way, thus allowing for bodies of general shape
(Ploumhans et al. [34], Ploumhans and Winckelmans [35, 36]). These developments have
all been implemented in 2-D, making it possible to compute flows past bluff bodies of
general geometries [35, 36].

The complexity of three-dimensional flows makes it necessary to use a high number
of computational elements: in practice, this also requires parallel algorithms. Part of the
developments mentioned above have already been implemented in 3-D, enabling computa-
tion of 3-D viscous flows without boundaries on parallel computers, with an O(N log N )

computational cost (Winckelmans et al. [45, 47]).
In this paper, we present several developments aimed at the high-resolution simulations

of flows past 3-D bluff bodies of general geometry. A fast parallel boundary element solver
(that solves the system of equations involved in the boundary condition enforcement in
O(M log M) operations per iteration) is coupled with the 3-D code previously developed
by Winckelmans et al. [45–47] and by Ploumhans et al. [34]. It is here complemented by the
3-D extension of the general redistribution technique presented in [35, 36], and by the use of
a 3-D mapping. This enables the performing of direct numerical simulations (DNS) of high
Reynolds number 3-D flows past bluff bodies of arbitrary shape, using a fast parallelized
vortex method with nonuniform resolution.

The paper is organized into the following parts. The basic equations (Section 2), the
vortex method (Section 3), a presentation of the techniques used to measure the forces
acting on the body (Section 4), and the validation of the method on the flow past a sphere
at Re = 300, 500, and 1000 (Section 5).

2. THE BASIC EQUATIONS FOR 3-D FLOWS

Three-dimensional incompressible flows are governed by the vorticity equation

Dω

Dt
= ∂ω

∂t
+ u · ∇ω= (∇u) · ω + ν∇2ω, (1)

where u(x, t) is the velocity field, ν is the kinematic viscosity, andω= ∇ × u is the vorticity.
In viscous flows, one must satisfy the no-slip boundary condition on solid surfaces. In the
vorticity formulation, Eq. (1), boundary conditions on the three components of the vorticity
are needed: a Dirichlet condition on the normal component ofω (Saffman [37], Cottet [5]),

ωn
�= ω · n = 0 (2)
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(as the tangential derivatives of the velocity vanish at the wall), and a Neumann condi-
tion on the two tangential components of ω (expressing the cancellation of the tangential
components of the slip velocity at the wall). The velocity can be expressed as

u = ∇ ×ψ + U∞, (3)

with U∞ the free stream velocity and ψ the stream function related to ω by

∇2ψ = −ω. (4)

3. THE VORTEX METHOD FOR 3-D FLOWS

In the present method, the vorticity field is represented by a set of N Lagrangian, vector-
valued particles,

ω̃(x, t) =
N∑

i = 1

ζi (x − xi )αi , (5)

where the particles have positions xi (t) and vector strengths αi that have units of circula-
tion times length: αi = ∫

Vi
ω dV

�= ωi Vi , with Vi the volume of fluid associated with the
particle i . The distribution function, ζi , associated with each particle is defined by

ζi (x) = 1

σ 3
i

ζ

( |x|
σi

)
, (6)

where σi is the smoothing parameter. There are many possible choices for the function ζ

(see, e.g., Leonard [23], Winckelmans and Leonard [44]). The Gaussian distribution is here
used throughout:

ζ(ρ) = 1

(2π)3/2
exp

(
−ρ2

2

)
. (7)

The velocity field is computed from Eq. (5) as the curl of the stream function which solves
∇2ψ̃ = −ω̃. Defining G(ρ) such that

∇2G(ρ) = −ζ(ρ), (8)

one obtains

ψ̃(x, t) =
N∑

i=1

Gi (x − xi )αi , (9)

where Gi (x − xi ) = G(|x − xi |/σi )/σi . The velocity u is obtained as

u(x, t) = −
N∑

j=1

q(|x − x j |/σ j )

|x − x j |3 (x − x j ) ×α j , (10)

with q(ρ) = ∫ ρ

0 ζ(s)s2 ds. For the Gaussian smoothing, G(ρ) = erf(ρ/
√

2)/(4πρ) and
q(ρ) = (erf(ρ/

√
2) − √

2/πρ exp(−ρ2/2))/(4π), where erf(s) = 2√
π

∫ s
0 exp(−v2) dv.

It is worth nothing that the particle field, Eq. (5), is not generally divergence free. Thus,
a basis that is not divergence free is used to represent the vorticity field (Winckelmans and
Leonard [44], Leonard et al. [21], Cottet [5]). The stream function, Eq. (9), is also not
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generally divergence free, as ∇2ψ̃= − ω̃ is solved with ω̃ not generally divergence free.
The velocity, u, is always divergence free because it is the curl of a field. As a convention,
a “tilde” is used to refer to the particle fields: Eqs. (5) and (9). We reserve the notation
ω for the divergence-free vorticity field ω= ∇ × u. When ω̃ and ω differ substantially, a
relaxation scheme can be used, where the particle weights are reset after redistribution so
as to best represent ω (Winckelmans and Leonard [44], Cottet [5], Leonard et al. [21]).

The way to handle viscous boundaries in the 2-D vortex method was originally developed
by Koumoutsakos et al. [17]. This method was later modified to make it more accurate,
better suited to the computation of flows past bodies of general geometry, and conservative
(Leonard et al. [21], Ploumhans et al. [34], Ploumhans and Winckelmans [35, 36]). It has
also been extended to 3-D (Ploumhans et al. [34]). A typical time step, �t , of the 3-D vortex
method is divided into two substeps:

• In substep 1, the local velocity is computed and integrated to convect the particles
(Section 3.1). Their strength is updated to account for the stretching (Section 3.1) and for the
diffusion (Section 3.2). The diffusion is treated with a modified particle strength exchange
(PSE) scheme, which guarantees a zero vorticity flux and a zero-normal component of
the vorticity at the solid boundary during substep 1. A second-order Adams–Bashforth
scheme is used for the time integration. After this substep, a slip velocity, �Uslip, is present
at the solid boundary. Algorithmically, substep 1 is expressed as

xn+1
i = xn

i + �t

(
3

2
ui (xn,αn) − 1

2
ui (xn−1,αn−1)

)
, (11)

α∗,n+1
i = αn

i + �t

(
3

2

(
dαi

dt

∣∣∣∣
st

(xn,αn) + dαi

dt

∣∣∣∣
PSE

(xn,αn)

)

− 1

2

(
dαi

dt

∣∣∣∣
st

(xn−1,αn−1) + dαi

dt

∣∣∣∣
PSE

(xn−1,αn−1)

))
. (12)

• In substep 2, the vector-valued vortex sheet, �γ, necessary on the body surface to
cancel the slip velocity generated by substep 1 is computed (Section 3.3). This vortex sheet
corresponds to a vorticity flux that must be emitted during a time �t (Section 3.4):

αn+1
i = α∗,n+1

i + �t

(
3

2

dαi

dt

∣∣∣∣
wall

(xn+1,α∗,n+1) − 1

2

dαi

dt

∣∣∣∣
wall

(xn,α∗,n)

)
. (13)

Also, a redistribution scheme must be applied every few steps (Section 3.5) to maintain
spatial uniformity of the particle distribution and thus maintain the second-order spatial
accuracy of the method. After each particle redistribution, the new time step is done using
a second-order Runge–Kutta scheme (Euler predictor, trapezoı̈dal rule corrector). Such a
time step is as follows:

(a) Euler predictor,

xn+1/2
i = xn

i + �tui (xn,αn), (14)

α
∗,n+1/2
i = αn

i + �t
dαi

dt

∣∣∣∣
st+PSE

(xn,αn), (15)

α
n+1/2
i = α

∗,n+1/2
i + �t

dαi

dt

∣∣∣∣
wall

(
xn+1/2,α∗,n+1/2

)
. (16)
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(b) Trapezoı̈dal rule corrector,

xn+1
i = xn

i + 1

2
�t

(
ui (xn,αn) + ui

(
xn+1/2,αn+1/2

))
, (17)

α∗,n+1
i = αn

i + 1

2
�t

(
dαi

dt

∣∣∣∣
st+PSE

(xn,αn) + dαi

dt

∣∣∣∣
st+PSE

(
xn+1/2,αn+1/2

))
, (18)

αn+1
i = α∗,n+1

i + 1

2
�t

(
dαi

dt

∣∣∣∣
wall

(
xn+1/2,α∗,n+1/2

) + dαi

dt

∣∣∣∣
wall

(xn+1,α∗,n+1)

)
. (19)

3.1. Convection and Stretching

Particle positions xi (t) are governed by the equation

dxi

dt
= u(xi (t), t), (20)

with

u(xi (t), t) = −
N∑

j=1

q(|xi − x j |/σi j )

|xi − x j |3 (xi − x j ) ×α j , (21)

where σ 2
i j = (σ 2

i + σ 2
j )/2. The use of the symmetrized σ is required for the convection step

to best conserve the linear and angular impulse (Leonard [22]). Particle strengths αi (t) are
stretched and rotated according to

dαi

dt

∣∣∣∣
st

= (∇u(xi (t), t)) ·αi (t), (22)

where the velocity gradient is obtained by analytically differentiating Eq. (21). This is the
so-called direct scheme. The fact that

(∇u) · ω= (∇u)T · ω (23)

yields other convergent, accurate schemes (see, e.g., Winckelmans and Leonard [44]). The
reason the direct scheme is here retained is that it behaves better than the other schemes based
on Eq. (23) with respect to the divergence problem (Cottet [5], Cottet and Koumoutsakos
[7]). By taking the divergence of Eq. (1), one finds that

D

Dt
(∇ · ω̃) = ν∇2(∇ · ω̃). (24)

The direct scheme thus basically diffuses ∇ · ω̃ (Cottet [5], Cottet and Koumoutsakos [7]).
The right-hand sides of Eqs. (21) and (22) are here computed using a parallel ver-

sion of the fast multipole algorithm that has an operation count of O(N log(N )), and
with active error control based on accurate error bounds (Barnes and Hut [2], Greengard
and Rohklin [11], Salmon and Warren [40], Salmon et al. [41], Winckelmans et al. [45–47]).
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3.2. Diffusion

The treatment of viscous diffusion is based on the technique of PSE (Degond and Mas-
Gallic [9]). In this algorithm, the Laplacian operator ∇2 is approximated by an integral
operator,

∇2ω(x) ≈ 2

σ 2

∫
ησ (x − y)(ω(y) − ω(x)) dy, (25)

with ησ (x) = η(|x|/σ)/σ 3 and η(s) = − 1
s

d
ds ζ(s). The Gaussian smoothing is such that

ησ = ζσ . The integral operator in Eq. (25) is discretized using the particles, and the evolution
equation for the particle strengths becomes

dαi

dt

∣∣∣∣
PSE

= 2ν

σ 2

N∑
j=1

(Viα j − Vjαi )ησ (xi − x j ) � 2ν

σ 2

∑
j∈Pi

(Viα j − Vjαi )ησ (xi − x j ). (26)

In practice, the right-hand side of Eq. (26) does not involve a contribution from all particles,
as the rapid decrease of ησ means that only the particles close to particle i contribute
significantly to dαi/dt . The subset of such particles is denotedPi . If the Gaussian smoothing
is used, Pi consists, typically, of the particles less than 5σ from xi . With the fast multipole
method, the velocity and velocity gradient induced by the particles inPi are always evaluated
directly. Thus, as the exponential is already computed, the additional PSE cost is truly
marginal. When σ is not the same for all particles, Eq. (26) is replaced by

dαi

dt

∣∣∣∣
PSE

= 2ν

N∑
j=1

1

σ 2
i j

(Viα j − Vjαi )ηi j (xi − x j )

� 2ν
∑
j∈Pi

1

σ 2
i j

(Viα j − Vjαi )ηi j (xi − x j ), (27)

with ηi j (xi − x j ) = η(|xi − x j |/σi j )/σ
3
i j . As for the original PSE, this symmetrized version

is still conservative: d
dt (

∑N
i=1αi ) = 0. It is also still second-order accurate provided σ

varies smoothly in space (Ploumhans and Winckelmans [35, 36]). An alternative approach
is to do the PSE in a mapped domain (Cottet et al. [6, 8], Ould Salihi [32], Cottet and
Koumoutsakos [7]).

In the presence of solid boundaries, the PSE is further modified: When computing the
PSE for particles close to the boundary, image particles are used. This technique was already
explained and validated by Ploumhans and Winckelmans [35, 36] for the 2-D case, and by
Ploumhans et al. [34] for the 3-D case. In the 3-D case, the use of images allows elegant
enforcement of the Dirichlet boundary condition on ωn (Cottet, private communication,
1997). The computation of the PSE for particle i involves two subsets of particles: Pi (the
subset of particles close enough to xi ) and P ′

i (the set of the images of the particles in Pi ). If
the particle i is such that xi is more than ds (typically 5σ for the Gaussian smoothing) from
the body surface, S, images have no effect on dαi/dt ; so P ′

i is empty. If xi is closer than ds

from S, each particle in Pi has an image particle in P ′
i . If x j is the position of a particle in

Pi , x′
j represents the position of its image. This position is computed using symmetry, the

plane of symmetry being the plane tangent to S and closest to xi (see Fig. 1). The volume
(V ′

j ) and smoothing parameter (σ ′
j ) of an image particle are taken equal to those of the
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FIG. 1. Use of PSE images in 3-D. The tangent components have a symmetric image (αx , αy); the normal
component has an antisymmetric image (αz).

original particle. The two components of the strength (α′
j ) parallel to the tangential plane,

T , are taken equal to those of α j . The normal component is taken with the opposite sign
(see Fig. 1).

The use of image particles guarantees that there is no spurious flux of the components of
vorticity parallel to the wall during the PSE. It also ensures that the normal vorticity remains
zero during the PSE. It can be shown (Cottet, private communication, 1997; Ploumhans et al.
[34], Cottet and Koumoutsakos [7]), for the planar geometry, that if ωn = 0 and if ∇ · ω= 0,
the enforcement of the Neumann boundary condition on the tangential components of ω
(using the algorithm presented in Section 3.3 and 3.4) does not introduce vorticity divergence
near the wall.

The convergence of the PSE in the presence of solid boundaries was studied by
Mas-Gallic [27], who showed that in 2-D, with a uniform resolution and with a planar
boundary, the image-modified PSE is first-order accurate. This proof was later extended to
curved boundaries by Benhaddouch [4]. This last proof also shows that the accuracy of the
image-modified PSE decreases as the curvature of the boundary increases. This calls for
alternative approaches when one deals with bodies involving sharp edges. One possibility
is to use the recent developments of Eldredge et al. [10], who developed “one-sided” ap-
proximations of derivative operators, which only gather information where it is available.
This could also be applied for slender bodies.

3.3. Computation of the Vortex Sheet

The vector-valued vortex sheet, �γ, necessary on the body surface to cancel the slip
velocity, �Uslip, is the solution of the Fredholm boundary integral equation of the second
kind,

1

2
�γ(x) × n + 1

4π

∫
S

1

|x − x′|3 · (x − x′) × �γ(x′) dx′ = �Uslip, (28)

where n points inside the fluid. The left-hand side of Eq. (28) is the opposite of the velocity
induced by the vortex sheet, at a point located on the surface.
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The vector sheet, �γ, is parallel to the body surface (hence only two components need
to be determined). Under the assumption that ω and ψ are divergence free, it is easily
seen that cancelling the two tangential components of the velocity at the wall automatically
guarantees that the normal velocity is also zero. One first considers the following identity:

∫
body

ψ · (∇ × (∇ ×ψ)) dV =
∫

body
|∇ ×ψ|2 dV −

∫
S
ψ · ((∇ ×ψ) × n) d S. (29)

Since u = ∇ ×ψ and ω = ∇ × u = ∇ × (∇ ×ψ), Eq. (29) can be rewritten as

∫
body

ψ · ω dV =
∫

body
|u|2 dV −

∫
S
ψ · (u × n) d S. (30)

For a nonrotating body, ω= 0 everywhere inside the body, so the left-hand side of Eq. (30)
vanishes. If u × n, the tangential velocity, is also zero at the wall, Eq. (30) becomes∫

body
|u|2 dV = 0, (31)

which means that the velocity is zero everywhere inside the body (and thus that u · n vanishes
at the wall).

To solve Eq. (28), the body surface is discretized using M boundary elements (i.e.,
“vortex sheet panels”), each of size O(h) (with h the typical distance between particles in
the vicinity of the body) and each of uniform strength. For each computational panel on the
body, the slip velocity underneath that panel is taken as the average, over the panel, of the slip
velocity induced by the free stream and by all vortex particles which, for this step only, are
considered point vortices (to ensure that all the vorticity is indeed outside of the body). The
average velocity is evaluated numerically, by integrating with some appropriate numerical
quadrature (e.g., Hammer quadrature for triangular panels) the slip velocity obtained from
the fast algorithm. Once the panel-averaged slip velocity, �Ūslip, has been evaluated for all
panels, computing the panel strengths to cancel it amounts to solving a linear system. This is
because, in addition to inducing a uniform tangential velocity underneath themselves (equal
to n × �γ/2), the panels also induce a tangential velocity on one another, as expressed by
Eq. (28). Notice that the tangential velocity induced by one panel on another is also averaged
over that panel, using the same numerical quadrature as above.

The solution of the linear system is obtained iteratively, using an underrelaxed Jacobi.
Each iteration requires a matrix vector multiply; thus there is an O(M2) computational cost
if classical methods are used. Furthermore, for large values of M , storing all M2 matrix
elements is completely impractical. The computational cost is here drastically reduced
by using the multipole expansion representation of the panels to efficiently evaluate the
matrix vector product. This leads to a computational cost that is O(M log M) per iteration.
Such a fast solver (implemented by Winckelmans et al. [45–47]) has been used for all the
simulations presented in this paper. The iterative procedure is stopped when the criterion√∑

P

∣∣�ŪP
slip + ū2

�γ

∣∣2 · S P < εp

√∑
P

∣∣�ŪP
slip

∣∣2
S P , (32)

where SP is the surface of panel P , �ŪP
slip is the slip velocity averaged over panel P , and

ūP
�γ is the vortex sheet induced velocity (from all vortex panels) averaged over panel P ,



VORTEX METHODS FOR 3D BLUFF BODY FLOWS 435

is satisfied. A typical value for εp is 10−4. As one can use, as first guess, the vortex sheet
strength at the previous time step (except at t = 0), the iterative method converges fast: For
the simulations presented in Section 5, seven iterations were typically required. Because
they are many more vortex particles than vortex panels, the cost of solving for the vortex
sheet strength is much less than the rest (10–15% when the wake is developed).

3.4. Vortex Sheet Diffusion

The total flux to be emitted into the flow for the other substep of the diffusion process is
given by

ν
∂ω

∂n
= �γ

�t
, (33)

with n pointing toward the fluid. This flux must be emitted during a time �t . In effect,
the vortex sheet �γ must be distributed to neighbor particles by discretizing the Green’s
integral for the inhomogeneous Neumann problem corresponding to the diffusion equation
(see Koumoutsakos et al. [17] for a simple scheme in 2-D). Leonard et al. [21], Ploumhans
et al. [34], and Ploumhans and Winckelmans [35, 36] have proposed a more accurate scheme.
The difference between this new scheme and the previous one, together with a numerical
test showing its enhanced accuracy, was detailed in [35, 36]. The extension of this scheme
to 3-D is straightforward (Ploumhans et al. [34]). Consider a rectangular panel of uniform
strength �γ and size b × f , located on the XY plane, and diffusing toward the positive Z
direction, as shown in Fig. 2. A particle located at (xi , yi , zi ), (zi > 0), receives, from that

FIG. 2. Panel to particles diffusion in 3-D.
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panel, an amount of “vorticity × volume” given by

�αi =
∫ �t

0

dαi

dt
dt, (34)

with

dαi

dt
=

∫ xi +hi /2

xi −hi /2

∫ yi +hi /2

yi −hi /2

∫ zi +hi /2

zi −hi /2

dω

dt
dx dy dz, (35)

where dω/dt , the rate of change of the vorticity due to the panel, is equal to

dω

dt
= �γ

�t

1

2
√

π

1√
4νt

exp

(
− z2

4νt

)
[erfc(s)](x+b/2)/

√
4νt

(x−b/2)/
√

4νt
[erfc(s)](y+ f/2)/

√
4νt

(y− f/2)/
√

4νt
. (36)

Equation (35) is then integrated exactly, giving

dαi

dt
= �γ

�t

(
[erfc(u)](zi −hi,l/2)/

√
4νt

(zi +hi /2)/
√

4νt

)

×
(√

4νt
1

2

(
[ierfc(u)](xi +hi /2−b/2)/

√
4νt

(xi −hi /2−b/2)/
√

4νt
− [ierfc(u)](xi +hi /2+b/2)/

√
4νt

(xi −hi /2+b/2)/
√

4νt

))

×
(√

4νt
1

2

(
[ierfc(u)](yi +hi /2− f/2)/

√
4νt

(yi −hi /2− f/2)/
√

4νt
− [ierfc(u)](yi +hi /2+ f/2)/

√
4νt

(yi −hi /2+ f/2)/
√

4νt

))
, (37)

where ierfc(s) = ∫ ∞
s erfc(v) dv = 1√

π
exp(−s2) − s erfc(s). Notice that hi,l/2 = zi if 0 ≤

zi < hi and hi,l/2 = hi/2 otherwise. This allows for particles in the “first layer” to be closer
to or further away from the XY plane than hi/2, and it ensures that the scheme remains
conservative in such cases. The time integral in Eq. (34) is evaluated numerically using a
Gauss quadrature (four points). Equation (37) is exact for a rectangle panel of size b × f .
To still use Eq. (37) when the discretization of the vortex sheet is done using triangular
panels, each triangular panel is considered, for the diffusion step, as a square (centered at
the triangle centroid, and of surface equal to that of the triangle).

If particles are on a regular lattice aligned with the panel (as shown in Fig. 2), Eq. (37) leads
to a conservative scheme. In practice, however, the spatial distribution of the particles is not
well aligned with the vortex panels: The proposed scheme is then not exactly conservative.
To enforce conservation, the following correction is made: Instead of using directly �αi

given by Eq. (34) one uses

�αi,conserv = �αi + |�αi |2∑
j |�α j |2

(
S �γ −

∑
j

�α j

)
, (38)

where j runs over all particles concerned by the panel. This scheme minimizes
∑

i |�αi −
�αi,conserv|2/|�αi |2 with the constraint that (S �γ) − (

∑
i �αi,conserv) = 0.

For diffusion with the above scheme to work properly, the spatial distribution of the
particles must remain fairly uniform. This is one reason why particle redistribution is needed
every 5–10 time steps. Of course, as in vortex methods without solid boundaries, it is also
needed to minimize the PSE, convection, and stretching errors.
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3.5. Particle Redistribution

In accurate particle methods for direct numerical simulation (DNS) of viscous flows, one
needs to maintain the condition that particle cores overlap at all times. This is a required
criterion for the convergence of the vortex method (Beale [3], Hald [12]) and calls for a
particle redistribution scheme. It consists of replacing the distorted set of vortex particles
with a new set where the particles are, again, located on an h × h × h lattice. If σ is not the
same for each particle, the redistribution is performed in a mapped domain (see Section 3.6)
in which particles are located on a 1 × 1 × 1 mapped lattice after redistribution. The volume
Vi = h3

i of each particle in the new set is determined by the mapping (see Section 3.6). The
smoothing parameter is taken as σi = β hi , with β the core overlapping parameter (typically,
β = 1 for the Gaussian as defined in Eq. (7)). For particles close to the body, the surface is
“corrected” in order to take into account the fact that part of the volume Vi associated to
particle i is “inside” the body.

The redistribution is performed in such a way that the moments of order zero, one, and
two of the vorticity field are conserved. This is required by the physics, as these moments
correspond, respectively, to the total vorticity, the linear impulse, and the angular impulse.
On top of the physical reason to conserve these moments, there is also a mathematical
one: Performing an analysis of the vorticity field in the Fourier space, Koumoutsakos
[16, 20] showed that the difference between the vorticity field computed (using Eq. (5))
from the distorted set of particles, and from the redistributed one, decreases as the number
of moments that are conserved increases.

The technique used to perform such a redistribution in the presence of solid boundaries
that intersect the redistribution lattice in an arbitrary way, has already been described for
the 2-D case (Ploumhans et al. [34], Ploumhans and Winckelmans [35, 36]). Since the
extension to 3-D is straightforward, it is not detailed here.

When performing a redistribution, one guarantees a minimum distance, dhalo, between a
new particle and the body surface (typically, dhalo = h/4, where h is the distance between the
particles close to the body surface). Numerical tests have indeed shown that this helps keep
the particles outside the body. If a particle comes inside, action has to be taken (for example
by relocating the particle outside); otherwise the particle will induce a very spurious slip
velocity (and thus a very spurious vortex sheet), something that usually leads to a fast
numerical blowup. However, relocating the particles breaks the vortex lines and, thus,
worsens the sensivity of the method to the divergence problem. Numerical experiments
have also shown the effect to be cumulative: If particles cross the boundary at one time
step and nothing is done, more particles will cross the boundary at the next time step.
Therefore, if particles cross the boundary, they are relocated outside, and an “emergency”
redistribution is performed at the next time step. Numerical tests have shown this procedure
to be acceptable, as long as it remains an occasional event. By occasional, we mean that
it can only occur during intense acceleration phases (such as an impulsive start). During
only one of the three simulations presented in Section 5 did a particle cross the body:
One particle crossed the body, just after the body was impulsively started. Recent tests
have shown that using a smaller time step during the acceleration phases eliminates this
phenomenon (Daeninck, private communication, 2001).

Notice that the 3-D situation is significantly different from the 2-D situation, where it
was better to let particles come inside the body and correct their position than to use a
“halo.” This was shown, in 2-D, by Ploumhans and Winckelmans [35, 36], who tested
several techniques to compute the flow past an impulsively started cylinder, using an h × h
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redistribution lattice. Simulations were performed at Re = U∞ D/ν = 550 and 3000, and the
results were compared with an analytical reference solution (Bar-Lev and Yang [1]) at short
times, and with a numerical reference solution computed using a body-fitted redistribution
lattice (similar to the one used by Koumoutsakos and Leonard [18]) at long times. Although
the techniques using dhalo = 0 led to more particles crossing the boundary, they also led to
(slightly) more accurate results than those using dhalo = h/4. Let us also mention that (a)
the difference with the other techniques was marginal, even just after the impulsive start
[35, 36], and (b) since dhalo is proportional to h, it goes to zero as h vanishes, so that using
a halo does not prevent the method from converging (this, too, was tested in 2-D).

A difficulty that occurs in dealing with the redistribution is to decide when to apply
it. No clear criterion exists. On one hand, to best preserve particle overlap, it is better to
redistribute frequently. On the other hand, higher order redistribution introduces a hyper-
viscous type of dissipation (Koumoutsakos [20]), so that one does not want to apply it too
frequently, to keep the redistribution-induced dissipation much smaller than the viscosity-
induced one. Koumoutsakos [20] tested the influence of the redistribution frequency on an
inviscid flow, the axisymmetrization of an elliptical vortex, and found no noticeable differ-
ence between the numerical dissipation obtained by redistributing every 9 steps and every
17 steps. Koumoutsakos and Shiels [19] also tested the influence of the redistribution on the
viscous flow past an impulsively started flat plate. Redistributing every 6, 12, or 24 steps
led to the same level of accuracy of the drag coefficient as a function of time, but the last
redistribution frequency produced noisier results. In most of their simulations, they used a
redistribution criterion based on the conservation of global quantities of the flow but always
redistributed at least once every 10 steps. On the other hand, Cottet et al. [6] computed the
3-D viscous interaction of a vortex ring with a plane and performed a redistribution every
time step. Even in this extreme case, they reported that the redistribution “produces no dis-
cernable extra dissipation.” However, they mention that in turbulent flows the redistribution
could act at a subgrid level.

In Ploumhans and Winckelmans [35, 36], 2-D simulations of the flow past a cylinder
were performed using a redistribution lattice that crosses the boundary arbitrarily. The
redistribution was performed every five time steps, and comparisons with a reference solu-
tion and a convergence analysis confirmed that this value produced accurate results. As the
vortex method presented in this paper is a direct 3-D extension of the 2-D method presented
in [35, 36], we keep using the same criterion and redistribute every five time steps.

3.6. Redistribution with Mapping of the Physical Domain

In external flows, the vorticity is located in the boundary layer and in the wake, with
the magnitude of the vorticity decreasing as one goes away from the body. It is thus more
efficient to have high resolution near the body and coarser resolution in the wake. To achieve
this, the physical domain, with spatially varying resolution, is mapped onto a regular indicial
lattice (i, j, k). This approach has been used previously to perform 2-D simulations (Cottet
et al. [6, 8], Ould Salihi [32], Cottet and Koumoutsakos [7], Ploumhans and Winckelmans
[35, 36]). It is here extended to the 3-D case. The mapping used in this paper is given by




x = x0 + r(i) cos θ( j) cos φ(k)

y = y0 + r(i) sin θ( j) cos φ(k)

z = z0 + r(i) cos θ( j) sin φ(k),

(39)
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FIG. 3. Redistribution mapping with m = 350, x0/D = − 2, y0/D = z0/D = 0, and R0/D = 0.5, and sphere
discretization with M = 5120 triangles. At Re = 300, a value of m = 700 is used, together with M = 20,480
triangles. At Re = 500, m = 950 and M = 20480. At Re = 1000, m = 1350 and M = 81,920.

with θ( j) = 2(π/m) j, φ(k) = (2π/m)k, −m/2 ≤ j, k ≤ m/2, and r(i) = R0 f (i). The
function f (i) is chosen as in 2-D:

f (i) = exp

(
2π

m
i

)
. (40)

Figure 3 shows an example of the redistribution mapping. The Jacobian of the mapping, J ,
is equal to

J =
(

2π

m

)3

r3(i) cos

(
2π

m
j

)
cos

(
2π

m
k

)
. (41)

It is seen to be zero for j = ±m/4 and k = ±m/4. In practice, this is not a problem,
because the parameters of the mapping are chosen such that particles remain “far” from
these singularities. There is another reason to use moderate values of j/m and k/m: the
desire that the volume associated with each particle (which is a 1 × 1 × 1 cube in the mapped
domain) be as close as possible to a cube in the physical domain. Indeed, one would like
that if di = d j = dk, then

∣∣∣∣∂x
∂i

∣∣∣∣di =
∣∣∣∣∂x
∂ j

∣∣∣∣d j =
∣∣∣∣∂x
∂k

∣∣∣∣ dk. (42)
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In practice, one considers

A1
R =

∣∣∣∣∂x
∂ j

∣∣∣∣
/∣∣∣∣∂x

∂i

∣∣∣∣, (43)

A2
R =

∣∣∣∣∂x
∂k

∣∣∣∣
/∣∣∣∣∂x

∂i

∣∣∣∣, (44)

which is a measure of the lattice anisotropy in the physical domain, with

∣∣∣∣∂x
∂ j

∣∣∣∣
/∣∣∣∣∂x

∂i

∣∣∣∣ =
√

cos2 φ + sin2 θ sin2 φ

cos2 φ + cos2 θ sin2 φ
, (45)

∣∣∣∣∂x
∂k

∣∣∣∣
/∣∣∣∣∂x

∂i

∣∣∣∣ =
√

cos2 θ + sin2 θ sin2 φ

cos2 φ + cos2 θ sin2 φ
. (46)

If θ and φ are both less than 25 deg, one has

0.91 ≤ A1
R ≤ 1 and 0.91 ≤ A2

R ≤ 1. (47)

This is the case for all the simulations presented hereafter.
After each redistribution, new particles in the mapped domain have position (i + 1/2, j +

1/2, k + 1/2) and the corresponding positions obtained from Eqs. (39) and (40) in the
physical domain. The volume of fluid associated with the particle is computed:

V = h3 =
∫ ∫ ∫

J di d j dk

=
∫ i+1

i

∫ j+1

j

∫ k+1

k

(
2π

m
R0

)3

exp

(
6π

m
i

)
di cos

(
2π

m
j

)
d j cos

(
2π

m
k

)
dk

= R3
0

3

(
exp

(
6π

m
(i + 1)

)
− exp

(
6π

m
i

))(
sin

(
2π

m
( j + 1)

)

− sin

(
2π

m
j

))
·
(

sin

(
2π

m
(k + 1)

)
− sin

(
2π

m
k

))

= 8

3
R3

0 exp

(
6π

m
(i + 1/2)

)
sinh

(
3π

m

)
cos

(
2π

m
( j + 1/2)

)

× sin

(
π

m

)
cos

(
2π

m
(k + 1/2)

)
sin

(
π

m

)
. (48)

For small values of π/m, this reduces to

V = h3 �
(

2π

m
R0 exp

(
2π

m
(i + 1/2)

))3

· cos

(
2π

m
( j + 1/2)

)
· cos

(
2π

m
(k + 1/2)

)
.

(49)

The smoothing parameter, σ , associated with the particle is taken as σ = βh, where β is
the core overlapping parameter (for the Gaussian, β = 1 is used). The use of this mapping
produces a σ that varies smoothly in space: Eq. (27) can thus be used safely, preserving the
second-order accuracy of the PSE.
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4. FORCE EVALUATION IN VORTEX METHODS

In vortex methods, the classical technique to evaluate the force F acting on a body is to
compute the time derivative of the linear impulse,

F
ρ

= −dI
dt

, (50)

where ρ is the density, and I is given by

I = 1

N − 1

∫
V

x × ω dV, (51)

withN the dimension of the space (N = 3 in 3-D,N = 2 in 2-D), and V the volume occupied
by the fluid. This method (referred to hereafter as method A) is very robust and has an almost
zero computational cost, as it is implemented as a sum running over all particles. However,
when performing simulations with nonuniform resolution (as is absolutely necessary for
long time simulations; see Section 5), the far wake could become underresolved, thereby
degrading the accuracy of I and F. It is thus desirable to also be able to evaluate the force
by a local method instead of a global one.

An alternative to the global method, Eqs. (50) and (51), is to perform a momentum
balance on a control volume (CV) that encloses the body (this second approach is referred
to hereafter as method B). Such an approach was developed by Noca et al. [30, 31]. Consider
a control volume VCV , with outer surface SCV , and inner surface S, the body surface. The
force acting on the body can be expressed as [30, 31]

F
ρ

= − 1

N − 1

d

dt

∫
VCV

x × ω dV +
∫

SCV

(
1

2
(u · u)n − (n · u)u

)
d S

− 1

N − 1

∫
SCV

(n · u)(x × ω) d S + 1

N − 1

∫
SCV

(n · ω)(x × u) d S

+ 1

N − 1

∫
SCV

x × (n × ∇ · T) d S +
∫

SCV

n · T d S

+ 1

N − 1

d

dt

∫
S

x × (n × u) d S −
∫

S
n · u d S, (52)

with T = ν(∇u + (∇u)T ). If the velocity vanishes at the wall, the integrals on S cancel. In
that case, Eq. (52) does not require information at the boundary, and the CV can be chosen
so as to enclose only a well-resolved region of the flow. The volume integral in Eq. (52) is
the same as the one appearing in Eq. (51). Method B is best viewed as method A applied
to the part of the flow inside SCV , complemented by a surface integral that accounts for
the momentum flux through SCV . If the CV is extended to infinity, one recovers Eq. (50).
The surface integrals in Eq. (52) are evaluated using the regularized velocity field and its
derivatives. The evaluation of the volume integral in Eq. (52) is difficult: One could decide to
use either singular particles (for which the integral becomes a sum running over all particles
inside VCV , but then the regularization of the particles is not the same as for the surface
integrals) or regularized particles (for which the volume integral is difficult to evaluate
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accurately, because particles close to SCV have vorticity contribution partly outside and
partly inside the CV). Neither solution is satisfactory. It is more advantageous to transform
the volume integral into a surface integral, which can then be evaluated using the regularized
fields ∫

VCV

x × ω dV =
∫

SCV +S
((u · x)n − u(x · n) + (N − 1)x(u · n)) d S. (53)

Note that the surface integral on S vanishes when u = 0 at the wall (as for the flows consi-
dered in this paper). Method B then enables evaluating of the force acting on a body by
performing only surface integrals. If several bodies are present, the force acting on each
body can also be found: by using one CV enclosing each body.

5. FLOW PAST A SPHERE

The capabilities of the present method are illustrated on the flow past a sphere. This
flow is considered because (a) it is a benchmark for bluff-body flows, and (b) it has been
investigated numerically and experimentally by other authors.

The flow past a sphere exhibits different behaviors as the Reynolds number, Re= U∞ D/ν,
is increased. As long as Re< Re1, the flow remains steady and axisymmetric. Experimen-
tal investigations (Wu and Faeth [48], Magarvey and Bishop [26]), linear stability analysis
(LSA) (Natarajan and Acrivos [29]), and numerical simulations (Tomboulides [42], Johnson
[14], Johnson and Patel [15], Tomboulides and Orszag [43]) all agree that Re1 is in the 210–
212 range. If Re> Re1, the flow remains steady but is not axisymmetric anymore. A second
transition occurs at Re = Re2, above which the flow becomes unsteady but still exhibits
(a) time periodicity and (b) planar symmetry. Experiments by Magarvey and Bishop [25]
and by Levi [24] predict a value for Re2 in the 270–290 range. More recently, the experi-
mental work of Ormières and Provansal [33] has narrowed the range to 275–285. The LSA
study of Natarajan and Acrivos [29] predicts a value of Re2 = 277.5. Numerical simulations
by Tomboulides [42], and Tomboulides and Orszag [43], predict 270 < Re2 < 285; those
by Johnson [14], and Johnson and Patel [15], predict 270 < Re2 < 280. A third transi-
tion appears at Re3, above which the time periodicity and planar symmetry are lost. The
experiments of Sakamoto and Haniu [38, 39] predict that Re3 ≈ 420, while numerical in-
vestigations by Mittal [28] indicate a loss of planar symmetry and periodicity for a critical
Reynolds number that lies in the 350–375 range. The numerical results of Tomboulides
[42] and Tomboulides and Orszag [43] at Re= 500 indicate that periodicity and symmetry
are indeed already lost. At even higher Reynolds numbers (Re> 800), it is seen experimen-
tally that smaller scales appear. At these Reynolds number, a Kelvin–Helmholtz instability
appears in the axisymetric shear layer that results from the separation of the boundary
layer.

We here performed numerical simulations at three Reynolds numbers, each corresponding
to a different flow behavior: Re = 300, 500, and 1000.

5.1. Re = 300

The flow at Re = 300 is first considered, because it has been thoroughly analyzed numer-
ically by Tomboulides [42], Johnson [14], Johnson and Patel [15], and Tomboulides and
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Orszag [43]. Furthermore, as explained in the previous section, at this Reynolds number
the flow attains a time periodic regime, making it practical and meaningful to compare
mean drag and lift coefficients. The flow is here started impulsively, and a perturbation is

applied to trigger the instability: Between T
�= tU∞/D = 3 and T = 4, the y component of

the free-stream velocity is U∞,y = sin(π(T − 3)).
The time step for the simulation is �T = 0.0125. The parameters of the mapping,

Eqs. (39) and (40), are x0/D = − 2, y0/D = z0/D = 0, m = 700, R0 = 0.5. Redistribution
is performed every five time steps. No particles have crossed the body surface during this
simulation. If a new particle has |α| < 10−4|α|max and Reh = |ω|h2/ν < Reh,trsh (with
|ω|h2 � |α|/h), it is deleted to avoid too high a growth rate for the number of particles. A
value of Reh,trsh = 10−4 was used. The presence of seven layers of particles around the body
is enforced after each redistribution. A halo is used with dhalo/D = 4.5 × 10−3. Gaussian
particles are used with σ/h = β = 1. Equation (34) is integrated using four Gauss points.
A four-point Hammer rule is used to compute the panel-averaged velocities (slip velocity
and panel-induced velocity). The sphere is discretized using an icosahedron that is split
recursively and blown on a sphere. At Re = 300, 20,480 triangular panels are used. Figure 3
shows the redistribution mapping together with the sphere discretization at a resolution
twice coarser than what was used for Re = 300. The control volume used to compute the
force with method B (see Section 4) is a sphere centered at 0, with diameter DCV = 2D, and
discretized by MCV = 20,480 triangles. A parallel fast tree code is used (Winckelmans et al.
[45–47]). The mean error estimate on the norm of the Biot–Savart velocity evaluated at the
particles is ∼5.5 × 10−3U∞. The number of particles goes from ∼141,000 to ∼616,000
(see Fig. 4), and the total run time is roughly 220 h on 32 processors of an HP V-Class
system.

FIG. 4. Flow past a sphere. Number of particles as a function of time for Re = 300 (solid line) and Re = 500
(dashed line).
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FIG. 5. CD (top) and CL (bottom) comparison for the flow past a sphere at Re = 300. Method A (solid),
method B (dashed), and mean values of Tomboulides and Orszag (chain-dot) and of Johnson and Patel (dotted).

Figure 5 provides the force coefficients versus time, CD = Fx/((
1
2ρU 2

∞)(π D2/4)) and
CL = Fy/((

1
2ρU 2

∞)(π D2/4)), computed using methods A and B (see Section 4). It is seen
that after T � 30, method A fails to predict a proper lift coefficient. The reason method A
predicts a lift of ever increasing magnitude while predicting a drag that remains bounded
can be understood by looking at the x and y components of the linear impulse I. Using the
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FIG. 6. Flow past a sphere at Re = 300. Contours of ωz in the XY plane for every quarter period. Levels are
by steps of 2, with additional contours at ±0.5, ±0.25, and ±0.125 (zero level is skipped).
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FIG. 7. Flow past a sphere at Re = 300. Contours of ωy in the X Z plane for every quarter period. Levels are
by steps of 2, with additional contours at ±0.5, ±0.25, and ±0.125 (zero level is skipped).
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FIG. 8. Flow past a sphere at Re = 300. Contours of ωx in the X Z plane for every quarter period. Levels are
by steps of 0.2 (zero level is skipped), with additional contours at ±0.1 and ±0.05.
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FIG. 9. Flow past a sphere at Re = 300. Perspective view of the vorticity structures identified by the λ2 method,
for every quarter period.

definition (51), one has

Ix = 1

2

∫
V
(yωz − zωy) dV, (54)

Iy = 1

2

∫
V
(zωx − xωz) dV . (55)

This shows that an error onω in the far wake induces in turn an error on Iy that is compounded
by the x coordinate (that is important in the far wake, and whose average over all particles
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FIG. 10. Flow past a sphere at Re = 300. XY view (side) and X Z view (top) of the complete extent of the
vorticity structures (identified by the λ2 method) at T = 75.

increases in time). Equation (55) also shows that Ix is not affected by this compounding
effects, hence the bounded value of CD predicted by method A.

The mean value of the force coefficients (associated with the time-periodic state of the
flow) obtained by Tomboulides [42], Tomboulides and Orszag [43], Johnson [14], and
Johnson and Patel [15] is also indicated on Fig. 5. Thus, the two force coefficients become
periodic, in good agreement with previous numerical and experimental work (see above).
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FIG. 11. Flow past a sphere. Maximum “mesh” Reynolds number, Reh = ωh2/ν, as a function of time for
Re = 300 (solid line) and Re = 500 (dashed line).

Computed average values (the average is here taken over the last three cycles) are C̄ D =
0.683 and C̄ L = −0.061, with oscillation amplitudes �CD = (CDmax − CDmin)/2 = 2.5 ×
10−3 and �CL = 1.4 × 10−2. The Strouhal number is St = f U∞/D = 0.135. Johnson [14]
and Johnson and Patel [15] found C̄ D = 0.656, C̄ L = −0.069, �CD = 3.5 × 10−3,

FIG. 12. Flow past a sphere. Divergence error, Ediv =
∫

V
|∇ × u − ω̃|2dV/(D U 2

∞), as a function of time, for
Re = 300 (solid line) and Re = 500 (dashed line).
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FIG. 13. Flow past a sphere at Re = 500. CD (top, solid line), CL (top, dashed line), and CS (bottom) as a
function of time.

�CL = 1.6 × 10−2, and St = 0.137. Tomboulides [42] and Tomboulides and Orszag [43]
found C̄ D = 0.671, �CD = 2.8 × 10−3, and St = 0.136. Our results are thus closer to those
of Tomboulides and Orszag than to those of Johnson and Patel. The reason is most likely
that the extent of the computational domain of Tomboulides and Orszag (xmax/D = 25)
is significantly greater than that of Johnson and Patel (xmax/D = 15). Hence the influence
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of the outflow boundary condition is less important and the results are better. The relative
difference between our value of C̄ D and the one of Tomboulides and Orszag is 1.77%.
For �CD the relative difference is 11.3%. If one computes the relative difference between
the results of Johnson and Patel and those of Tomboulides and Orszag, one finds 2.26 and
22.2% for C̄ D and �CD , respectively. The discrepancies between our results and those
of Tomboulides and Orszag are thus smaller than the discrepancies between the results of
Tomboulides and Orszag and those of Johnson and Patel.

Contours of ωz in the near wake XY plane are shown in Fig. 6. The time difference
between the pictures is one quarter of a period. A truly periodic regime is attained: The
first and the last pictures are basically identical. Contours of ωy and ωx in the XZ plane are
shown in Figs. 7 and 8. The symmetry of the flow is clearly visible. The λ2 method of Jeong
and Hussain [13] was used to identify the vortex structures. Three-dimensional perspective
views for one period are shown in Fig. 9. The complete extent of the wake at the end of the
simulations (T = 75) is shown in Fig. 10.

Figure 11 shows the maximum “mesh” Reynolds number, Reh=|ω|h2/ν (withω=∇×u),
as a function of time. It is seen that Reh is everywhere smaller than 6. Furthermore, the lo-
cation where Reh is greatest is always in the far wake. The flow is thus well resolved in the
far wake, and very well resolved near the sphere surface, as Reh � 2 in the boundary layers.

A measure of the vorticity divergence error,

Ediv = 1

DU 2∞

∫
V

|∇ × u − ω̃|2 dV

� 1

DU 2∞

N∑
i=1

|∇ × u(xi ) − ω̃(xi )|2Vi , (56)

where ∇ × u is obtained by analytical differentiation of Eq. (21) (in practice this does not

FIG. 14. Flow past a sphere at Re = 1000. Number of particles as a function of time.
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FIG. 15. Flow past a sphere at Re = 1000. Contours of |ω| in the XY plane for T = 6, 8, 10, 12, 14, 16, 18, 20
(top to bottom, left to right). Levels are by steps of 2.

imply an extra cost, as the components of the velocity gradient are already computed to
account for the stretching term; see Eq. (22)), is shown in Fig. 12. It is higher at the beginning
of the simulation (because vortex regions are then very thin, and thus |ω|max is large), then
decreases and remains roughly constant (as does |ω|max).
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FIG. 16. Flow past a sphere at Re = 1000. Contours of |ω| in the X Z plane for T = 6, 8, 10, 12, 14, 16, 18, 20
(top to bottom, left to right). Levels are by steps of 2.

5.2. Re = 500

The flow at Re = 500 was simulated, using the same perturbation as for the Re = 300
case. The time step for the simulation is �T = 0.01. The mapping now has m = 950.
The halo thickness is dhalo/D = 3.3 × 10−3. The control volume has MCV = 81920. The
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FIG. 17. Flow past a sphere at Re = 1000. Perspective view of the vortex structures identified by the λ2

method, for T = 20.

mean error estimate on the norm of the Biot–Savart velocity evaluated at the particles is
∼6 × 10−3U∞. The number of particles increases from ∼240,000 to ∼1,225,000 during the
simulation (see Fig. 4). This simulation ran for 1100 h on 32 processors of a Beowulf-type
computer made of Pentium Pro running at 200 MHz. Only one particle crossed the body
surface during this simulation. The other numerical parameters are identical to those used in
Section 5.1.

The drag and lift coefficients (obtained with method B) are reported in Fig. 13. It is seen
that they do not become periodic, which is in agreement with the results of Tomboulides
[42] and Tomboulides and Orszag [43]. Figure 13 also shows the side force coefficient,
CS = Fz/((

1
2ρU 2

∞)(π D2/4)), as a function of time. Although no perturbation was

FIG. 18. Flow past a sphere at Re = 1000. Perspective view of the isosurface |ω| = 2, for T = 20.
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FIG. 19. Flow past a sphere at Re = 1000. CD (top, solid line), CL (top, dashed line), and CS (bottom) as a
function of time.

introduced in the Z direction, CS is not zero. This indicates that the flow is becoming
fully three dimensional.

The maximum “mesh” Reynolds number as a function of time is shown in Fig. 11. The
location where it is maximum is always in the wake, while the boundary layers have Reh � 2.
The divergence error, as defined in Eq. (56), is shown in Fig. 12.
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5.3. Re = 1000

The flow at Re = 1000 is now considered. The flow is started impulsively, and a pertur-
bation is applied to trigger the instability: Between T = 3 and T = 4, the y component of
the free-stream velocity is U∞,y = 0.1 sin(π(T − 3)).

The time step for the simulation is �T = 0.005. For the mapping, m = 1350. The halo
thickness is dhalo/D = 2.3 × 10−3, and the number of panels is M = 81,920. The mean error
estimate on the norm of the Biot–Savart velocity evaluated at the particles is∼6.6 × 10−3U∞.
No particles have crossed the body surface during this simulation. The other numerical pa-
rameters are as in Section 5.1.

The simulation extends up to T = 20. In the course of the computation the number of
particles goes from ∼460,000 to ∼2,300,000 (see Fig. 14). The total run time is roughly
230 h on 64 processors of an HP V-Class system.

Contours of |ω| in the near wake XY and XZ plane are shown in Figs. 15 and 16 for
different times. The flow is initially symmetric, as was the perturbation. However, when
T = 18, the near wake becomes asymmetric (see Fig. 16). This is even clearer at T = 20.

Perspective view of the vortex structures (as defined by the λ2 method) at T = 20 is
shown in Fig. 17. The surface |ω| = 2 is shown in Fig. 18 (this level corresponds to ∼5%
of |ω|max). It is seen that a complex structure, which originates from the perturbation, is
shed. This creates significant variations in the drag and lift coefficients, as can be seen in
Fig. 19. The side force coefficient, CS , is also shown in Fig. 19. Although the perturbation
was symmetric, the flow is clearly evolving toward a state that is fully three dimensional,
i.e., with little or no symmetry. This is supported by Fig. 20, which shows that CL and CS

are of the same order of magnitude, between T = 15 and 20.
The transition to a fully three dimensional flow in the near wake is best seen in Fig. 21,

which shows ωx in the XY plane. The symmetric perturbation did not introduce vorticity in

FIG. 20. Flow past a sphere at Re = 1000. CL (solid line) and CS (dashed line) as a function of time.
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FIG. 21. Flow past a sphere at Re = 1000. Contours of ωx in the XY plane for T = 6, 8, 10, 12, 14, 16, 18, 20
(top to bottom, left to right). Levels are by steps of 6.25 × 10−3 for 6 ≤ T ≤ 10, 2.5 × 10−2 for 12 ≤ T ≤ 14, and
0.4 for 16 ≤ T ≤ 20 (zero level is always skipped).

the streamwise direction: Figure 21 indeed confirms that, at T = 6, almost no streamwise
vorticity exists in the XY plane. At later times, T = 16–20, no ωx subsists in the regions
close to the sphere. Significant ωx however appears in the near wake, with a magnitude
increasing in time: The flow is developing into a truly turbulent flow.
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FIG. 22. Flow past a sphere at Re = 1000. Maximum mesh Reynolds number, Reh, as a function of time.

Figure 22 shows the maximum “mesh” Reynolds number, Reh = |ω|h2/ν, as a function
of time. It is seen that Reh is higher than in the simulations for the Re = 300 and 500 cases,
but an inspection of the numerical data shows that this maximum occurs in the structure
that is shed. The flow is still very well resolved near the sphere surface, as Reh,max � 3 in
the boundary layers. The divergence error, Ediv, is reported in Fig. 23.

FIG. 23. Flow past a sphere at Re = 1000. Divergence error, Ediv, as a function of time.
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6. CONCLUSIONS

Several contributions to the 2-D vortex methods were presented in previous papers
[35, 36]. They have been extended to 3-D and combined with previous work on fast parallel
tree codes [40, 41, 45–47]. The main feature of the resulting method are as follows:

• A fast parallel tree code is used to compute the velocity and its gradient from the
vorticity in O(N log N ) operations. This allows us to perform simulations with N that is
O(106).

• The modified particle strength exchange (PSE) scheme was used near the solid bound-
aries: It uses images to (a) guarantee a zero flux in the vorticity components parallel to the
wall during the PSE substep, and (b) enforce a zero-normal component of the vorticity at
the wall.

• The boundary condition is enforced in two steps: A vortex sheet that cancels the slip
velocity is first computed; it is then diffused onto nearby particles. The vortex sheet is
found as the result of a boundary integral problem that is solved using a parallel iterative
solver based on multipole expansions of vortex panels, hence a computational cost of
O(M log M) per iteration. The scheme used to diffuse the vortex sheet presented herein is
a direct extension to 3-D of the scheme presented in previous papers [21, 34–36]. That 2-D
scheme was an enhancement of a scheme originally developed by Koumoutsakos et al. [17].

• The technique used in [34–36] to redistribute particles in the presence of bodies of
general geometry, while conserving the total vorticity, linear impulse and angular impulse,
was extended to 3-D.

• A mapping of the redistribution lattice was integrated into the method, making it
possible to compute the far wake of bluff-body flows with a coarser, controllable, resolution.

• A method to compute the fluid forces by performing a momentum balance over a
control volume, originally developed by Noca et al. [30, 31], was modified to only use the
velocity and its derivatives on the outer surface of the control volume. This approach makes
it possible to compute forces using information from the well-resolved region only.

The 3-D method was validated on the flow past a sphere at Re = 300. This flow was
computed up to a time of T = 75, so that a periodic regime was reached. The mean drag
and lift coefficients over one period, as well as the Strouhal number, were shown to be in
very good agreement with the results of Tomboulides [42], Johnson [14], Johnson and Patel
[15], and Tomboulides and Orszag [43]. The fluctuations’ amplitudes of the drag and lift
coefficients were in good agreement as well.

The flow past a sphere at Re = 500 was computed up to T = 65. It did not reach a periodic
regime, which is in agreement with previous experimental and numerical work (see Section 5
and references therein). The flow past a sphere at Re = 1000 was also computed up to T = 20.
We intend to further investigate these flows using the present vortex method. The results of
the detailed fluid flow analysis will be reported in another paper.

The present vortex method was also used recently to compute flows past other bluff bodies
(Brady, private communication, 2000): a rounded cube, two rounded cubes in tandem,
rounded prisms, a rounded cube above a viscous ground.

A possible way to speed up the vortex method would be to couple the multipole method we
use with vortex-in-cell methods: The multipole Poisson solver would then be used to obtain
the boundary condition required by the grid-based Poisson solver, thereby allowing use of
a grid bounding the vortical region very tightly. This coupled approach seems promising
and we intend to investigate it in the future.
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